53 research outputs found

    Unexpected homology between inducible cell wall protein QID74 of filamentous fungi and BR3 salivary protein of the insect Chironomus

    Get PDF
    A gene, qid74, of mycoparasitic filamentous fungus Trichoderma harzianum and its allies encodes a cell wall protein that is induced by replacing glucose in the culture medium with chitin (simulated mycoparasitism conditions). Because no trace of this gene can be detected in related species such as Gibberella fujikuroi and Saccharomyces cerevisiae, the qid74 gene appears to have arisen de novo within the genus Trichoderma. Qid74 protein, 687 residues long, is now seen as highly conserved tandem repeats of the 59- residue-long unit. This unit itself, however, may have arisen as tandem repeats of the shorter 13-residue-long basic unit. Within the genus Trichoderma, the amino acid sequence of Qid74 proteins has been conserved in toto. The most striking is the fact that Qid74 shares 25.3% sequence identity with the carboxyl-terminal half of the 1,572-residue-long BR3 protein of the dipteran insect Chironomus tentans. BR3 protein is secreted by the salivary gland of each aquatic larva of Chironomus to form a tube to house itself. Furthermore, the consensus sequence derived from these 59-residue-long repeating units resembles those of epidermal growth factor-like domains found in divergent invertebrate and vertebrate proteins as to the positions of critical cysteine residues and homology of residues surrounding these cysteines.Comisión Interministerial de la Ciencia y la Tecnología BIO 94-0289European Commission TS3-CT92-014

    Purification and characterization of an endo-beta-1,6-glucanase from Trichoderma harzianum that is related to its mycoparasitism

    Get PDF
    he enzymes from Trichoderma species that degrade fungal cell walls have been suggested to play an important role in mycoparasitic action against fungal plant pathogens. The mycoparasite Trichoderma harzianum produces at least two extracellular beta-1,6-glucanases, among other hydrolases, when it is grown on chitin as the sole carbon source. One of these extracellular enzymes was purified to homogeneity after adsorption to its substrate, pustulan, chromatofocusing, and, finally, gel filtration. The apparent molecular mass was 43,000, and the isoelectric point was 5.8. The first 15 amino acids from the N terminus of the purified protein have been sequenced. The enzyme was specific for beta-1,6 linkages and showed an endolytic mode of action on pustulan. Further characterization indicated that the enzyme by itself releases soluble sugars and produces hydrolytic halli on yeast cell walls. When combined with other T. harzianum cell wall-degrading enzymes such as beta-1,3-glucanases and chitinases, it hydrolyzes filamentous fungal cell walls. The enzyme acts cooperatively with the latter enzymes, inhibiting the growth of the fungi tested. Antibodies against the purified protein also indicated that the two identified beta-1,6-glucanases are not immunologically related and are probably encoded by two different genesEspaña CICYT BIO91-1078Comunidad Europea TS3-CT92-014

    A novel endo-β-1,3-glucanase, BGN13.1, involved in the mycoparasitism of Trichoderma harzianum

    Get PDF
    The mycoparasitic fungus Trichoderma harzianum CECT 2413 produces at least three extracellular β-1,3-glucanases. The most basic of these extracellular enzymes, named BGN13.1, was expressed when either fungal cell wall polymers or autoclaved mycelia from different fungi were used as the carbon source. BGN13.1 was purified to electrophoretic homogeneity and was biochemically characterized. The enzyme was specific for β-1,3 linkages and has an endolytic mode of action. A synthetic oligonucleotide primer based on the sequence of an internal peptide was designed to clone the cDNA corresponding to BGN13.1. The deduced amino acid sequence predicted a molecular mass of 78 kDa for the mature protein. Analysis of the amino acid sequence indicates that the enzyme contains three regions, one N-terminal leader sequence; another, nondefined sequence; and one cysteine-rich C-terminal sequence. Sequence comparison shows that this β-1,3-glucanase, first described for filamentous fungi, belongs to a family different from that of its previously described bacterial, yeast, and plant counterparts. Enzymatic-activity, protein, and mRNA data indicated that bgn13.1 is repressed by glucose and induced by either fungal cell wall polymers or autoclaved yeast cells and mycelia. Finally, experimental evidence showed that the enzyme hydrolyzes yeast and fungal cell wall

    Prognostic significance of human pituitary tumor-transforming gene immunohistochemical expression in differentiated thyroid cancer

    Get PDF
    Context: Human securin pituitary tumor-transforming gene (hPTTG) is overexpressed in a variety of primary neoplasias, including differentiated thyroid cancer (DTC). Objective: The objective of this study was to examine the immunohistochemical expression of hPTTG in DTC and its association with known prognostic factors. Design: hPTTG expression was analyzed by immunostaining on paraffin-embedded tissues. Clinical data were used to determine any associations between the expression of hPTTG and prognostic variables of DTC. A median follow-up of 43 months allowed us to analyze the persistence of disease and the response to radioiodine therapy. Setting: The study was conducted at a tertiary university hospital. Patients: Ninety-five patients undergoing surgical resection for DTC (n = 60) or benign nodular thyroid disease (n = 35) were studied. Main Outcome Measure: The main outcome measure was the association between hPTTG expression and prognostic factors in DTC. Results: Among DTC cases, 21 (35%) had low and 39 (65%) had high hPTTG immunostaining. Adjacent nonneoplastic thyroid tissue was largely unstained. Among benign nodular thyroid disease cases, immunostaining was detected focally in eight (22.8%). A significant association was found between hPTTG expression and the presence of nodal (P < 0.01) or distant metastases (P < 0.05). A significant association with TNM was also found, because 83.3% of advanced TNM stages showed elevated hPTTG (P < 0.05). The association between hPTTG overexpression and decreased radioiodine uptake during follow-up was also significant (P < 0.05). The expression levels of hPTTG were confirmed as an independent prognostic factor for persistent disease (relative risk, 3.0; 95% confidence interval, 1.1-8.7; P < 0.05). Conclusions: Immunohistochemical analysis of hPTTG is of potential value in the determination of tumor aggressiveness in DTC.Peer Reviewe

    PTTG2 silencing results in induction of epithelial-to-mesenchymal transition and apoptosis

    Get PDF
    Human securin, also known as human pituitary tumor-transforming gene 1 (pttg1), plays a key role in cell-cycle regulation. Two homologous genes, pttg2 and pttg3, have been identified although very little is known about their physiological function. In this study, we aimed at the characterization of these two pttg1 homologs. Real-time PCR analysis using specific probes demonstrated that Pttg2 is expressed at very low levels in various cell lines and tissues whereas Pttg3 was largely undetectable. We focused on the study of Pttg2 and found that, unlike PTTG1, PTTG2 lacks transactivation activity and does not bind to separase, making improbable a role in the control of sister chromatids separation. To further investigate the biological role of pttg2, we used short hairpin RNA inhibition of Pttg2 and found that cells with reduced Pttg2 levels assumed a rounded morphology compatible with a defect in cell adhesion and died by apoptosis in a p53- and p21-dependent manner. Using microarray technology, we generated a gene expression profile of Pttg2-depleted cells versus wild-type cells and found that knockdown of PTTG2 results in concomitant downregulation of E-cadherin and elevated vimentin levels, consistent with EMT induction. The observation of aberrant cellular behaviors in Pttg2-silenced cells reveals functions for pttg2 in cell adhesion and provides insights into a potential role in cell invasion. © 2013 Macmillan Publishers Limited.JAP-T was supported by grants from the Ministerio de Educación y Cultura of Spain and the Dirección General de Universidades e Investigación of Junta de Andalucía. CM-V and MAM-M were recipients of a postdoctoral contract from the Spanish National Research Council (JAE-DOC) and Junta de Andalucía, respectivelyPeer Reviewe

    PTTG2 silencing results in induction of epithelial-to-mesenchymal transition and apoptosis

    Get PDF
    Human securin, also known as human pituitary tumor-transforming gene 1 (pttg1), plays a key role in cell-cycle regulation. Two homologous genes, pttg2 and pttg3, have been identified although very little is known about their physiological function. In this study, we aimed at the characterization of these two pttg1 homologs. Real-time PCR analysis using specific probes demonstrated that Pttg2 is expressed at very low levels in various cell lines and tissues whereas Pttg3 was largely undetectable. We focused on the study of Pttg2 and found that, unlike PTTG1, PTTG2 lacks transactivation activity and does not bind to separase, making improbable a role in the control of sister chromatids separation. To further investigate the biological role of pttg2, we used short hairpin RNA inhibition of Pttg2 and found that cells with reduced Pttg2 levels assumed a rounded morphology compatible with a defect in cell adhesion and died by apoptosis in a p53- and p21-dependent manner. Using microarray technology, we generated a gene expression profile of Pttg2-depleted cells versus wild-type cells and found that knockdown of PTTG2 results in concomitant downregulation of E-cadherin and elevated vimentin levels, consistent with EMT induction. The observation of aberrant cellular behaviors in Pttg2-silenced cells reveals functions for pttg2 in cell adhesion and provides insights into a potential role in cell invasion. © 2013 Macmillan Publishers Limited

    UV-induced degradation of securin is mediated by SKP1-CUL1-βTrCP E3 ubiquitin ligase

    Get PDF
    Securin is a chaperone protein with bifunctional properties. It binds to separase to inhibit premature sister chromatid separation until the onset of anaphase, and it also takes part in cell-cycle arrest after UV irradiation. At metaphase-to-anaphase transition, securin is targeted for proteasomal destruction by the anaphase-promoting complex or cyclosome (APC/C), allowing activation of separase. However, although securin is reported to undergo proteasome-dependent degradation after UV irradiation, the ubiquitin ligase responsible for securing ubiquitylation has not been well characterized. In this study, we show that UV radiation induced a marked reduction of securin in both the nucleus and cytoplasm. Moreover, we show that GSK-3β inhibitors prevent securin degradation, and that CUL1 and βTrCP are involved in this depletion. We also confirmed that SKP1-CUL1-βTrCP (SCFβTrCP) ubiquitylates securin in vivo, and identified a conserved and unconventional βTrCP recognition motif (DDAYPE) in the securin primary amino acid sequence of humans, nonhuman primates and rodents. Furthermore, downregulation of βTrCP caused an accumulation of securin in non-irradiated cells. We conclude that SCFβTrCP is the E3 ubiquitin ligase responsible for securing degradation after UV irradiation, and that it is involved in securin turnover in nonstressed cells.Ministerio de Educación y Ciencia SAF 2005-07713-C03-0

    Potential use of adipose tissue stem cells in the control of aging

    Get PDF
    Cell therapy with adult stem cells is a new battle front for the control of aging. Before being used for this purpose, we need to answer several basic questions about the biochemistry and physiology of these cells. This paper presents some aspects and preliminary results obtained in our laboratory using stem cells from adipose tissue.Ministerio de Ciencia e Innovación BFU 2010 2088

    Grb2 and Its Apoptotic Isoform Grb3-3 Associate with Heterogeneous Nuclear Ribonucleoprotein C, and These Interactions Are Modulated by Poly(U) RNA

    Get PDF
    Grb2 is an adaptor molecule comprising one Src homology (SH) 2 and two SH3 domains. This protein has a natural isoform named Grb3-3 with a deletion within the SH2 domain. Numerous evidence points to a functional connection between SH2- and SH3-containing proteins and molecules implicated in RNA biogenesis. In this context, we have examined the binding of Grb2 and Grb3-3 to heterogeneous nuclear ribonucleoprotein (hnRNP) C. By the use of an in vivo genetic approach and through in vitroexperiments, we furnish evidence that both Grb2 and Grb3-3 interact with hnRNP C proteins. Subcellular fractionation studies clearly show that Grb2 is partially localized in the nucleus. In addition, coimmunoprecipitation experiments demonstrate that Grb2·hnRNP C complexes exist in intact hematopoietic cells. The carboxyl-terminal SH3 domains of Grb2 and Grb3-3 are primarily responsible for the association with hnRNP C. However, although the proline-rich motif of hnRNP C is involved in the interaction with Grb2, it is not in the binding to Grb3-3. Furthermore, poly(U) RNA inhibits the association of Grb2 with hnRNP C, whereas it enhances the interaction between Grb3-3 and hnRNP C. These findings suggest that the Grb2/Grb3-3-hnRNP C interactions might fulfill different biological functions

    Modificación de ribosomas de Escherichia coli con agentes acilantes obtención y estudio de nuevas partículas subribosómicas

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid. Facultad de Ciencias. Departamento de Biología Molecular. Fecha de lectura: 5-03-198
    corecore